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Aceesslon For

TIME-TO-GO PREDICTION FOR A HOMING MISSILE TY ,
BASED ON MINIMUM-TIME TRAJECTORIES' U c

David G. Hull2 and Jerry J. Radkes  .

Department of Aerospace Engineering and Engineering Mechanics " , oThe University of Texas at Austin ..- .
Austin, Texas -'s

,Dist .c

Abstract Introduction

In two dimensions, the trajectory of a constant veloc- A guidance law of current interest for bank-to-turn hom-
ity mWissile which intercepts a zero-acceleration target and ing missiles is the linear-quadratic guidance law which con-
which minimizes the weighted sum of the final time and tains proportional navigation as a particular case (see, for
the integral of the missile normal acceleration squared is example, Ref. 1). In order to implement this guidance law.
derived. The launch angle of the missile is arbitrarily pre- an algorithm for predicting time-to-to is needed. The sim-
scribed. The optimal control involves elliptic functions and plest time-to-go formula is range divided by closing speed
requires the numerical solution of two non-linear algebraic and is valid for a constant-velocity missile and target on a
equations foL its calculation. This procedure is used to cal- collision course. This formula has been improved in Ref. 2
culate the time-to-go in a six-degree-of-freedom simulation by accounting for the missile longitudinal acceleration.
in which the target performs accelerated maneuvers. The Unfortunately, the linear-quadratic guidance law tends
current missile velocity is projected on the plane of the line to drive the missile and the target into a homing triangle
of sight vector and the target vector, and the time required in which range and closing speed become unobservable, In
to perform the two-dimensional intercept is calculated and Ref. 1, a linear-quadratic guidance law for dual control
used as the time-to-go for the linear-quadratic guidance law (intercept and estimation enhancement) has been proposed.
of the missile. Results show substantial improvement rel- This guidance rule moves the missile away from the homing
ative to the range-over-closing-speed method of computing triangle improving estimation but making the time-to-go
time-to-go. algorithm invalid.

The purpose of this study is to develop a time-to-go
List of Symbols algorithm which is suitable for dual control. This is accom-

plished by finding the normal acceleration history which
a,n Missile normal acceleration (ft/sec2) minimizes the time for a constant-velocity missile to inter-
A, B,C Constants defined in Eqs. (21) through (23) cept a nonaccelerating target and using this time as the
G End-point function time-to-go. To account for a limit on the normal accelera-
H Hamiltonian tion, the performance index is weighted by the integral of
J Performance index the control squared.
K Modulus of elliptic functions As a first step, the analysis is carried out in two di-
P Magnitude of missile acceleration oscillation mensions with the hope that some insight in the three-
i Time (sec) dimensional problem will be achieved. The resulting time-v Ratio of target speed to missile speedV Velocity (ft/sec) to-go algorithm is tested in a six-degree-of-freedom simula-

S Veloihty inthec pertion by projecting the current missile velocity vector onto
X, W Inertial coordinates the plane of the line of sight and the target velocity. The

an Nondimensional missile normal acceleration optimal intercept time is computed in this plane and used as
7 Angle of maximum normal acceleration the time-to-go for the linear-quadratic guidance law. Missile

Nondimensional relative abscissa acceleration is included by using an average missile speed.
?I  Nondimensional relative ordinate
0 Orientation of missile velocity vector to X-axis Optimal Intercept Problem
. Variable Lagrange multiplier
r Nondimensional time The geometry of the intercept problem is shown in Fig. 1.
0 Orientation of target velocity to X-axis The XY coordinate system represents an inertial frame, and

Transformed variable representing # the X axis is along the line of sight at i = 0. The target,

located at Xr = X. at t = 0, is moving along a straight line
'Copyright 01988 by the American Institute of Aeronautics and which makes an angle 0 with respect to the X axis. The

Astronautics, Inc. All rights reserved, constant-speed missile is launched at an angle 0o relative to
M.J. Thompson Regents Professor, Associate Fellow AIAA the X axis, and the velocity direction 0(t) is changed by

'Graduate Research Assistant controlling the normal acceleration a,,(t).

=" • i i l I I ii Ib



hi terms of the nondimensional quantities From the end-point function

VM XT - XM Y - YU G = W(rf - .) + Pgi + vnnT, (13)
r~t = x, ' - xo

(1) it is seen that the natural boundary conditions are
a.Xo Vit

a, 2 = = V Hf = -G,, = -W (14)
MMA U  = G0 =V( (15)

the optimal intercept problem is stated as follows: Find A = G, =vl (16)
the normal acceleration history a.(r) which minimizes the = = 0 (16)
performance index A0!. G., = 0 (17)

= w(r 1 - W) + 2 w ]adr (2) Eqs. (12) and(17) imply that
=f"o anf = 0 (IS)

subject to the differential constraints
Since the Hamiltonian is not an explicit function of time,

= cosoi-cos0 (3) the first integral H = const exists. When combined with

vsino-sin0 (4) Eq. (14), the first integral becomes

a (5) II=-W (19)

and the prescribed boundaiy conditions
Hence, if the definition (8) of H is substituted into Eq.

To = 0, o = 1, Ro = 0, Oo = Oos (6) (19), the following expression for the optimal control can

/= 0, ql 0 (7) be obtained

where 0os is the specified value of o. an 2 (A+ Bsin + Ccos) (20)
The performance index is the weighted sum of the final ,, - .

time and the integral of the normal acceleration squared. where
Without the integral, the solution of the optimal control
problem is infinite normal acceleration to rotate the missile A = W + AVcos + Ausin 0 (21)
velocity to the homing triangle direction followed by zero
normal acceleration until intercept. The physical bound B = -A, (22)
which exists on normal acceleration can be incorporated C = -A( (23)

directly as a control variable inequality constraint. This If 0o were free, the optimal a, would be a, = 0, and the
approach makes the optimal control be maximum normal optimal intercept path would be e const. OSL or a
acceleration followed by zero normal acceleration and is stigtlinece,0 p wol te p s n E S 2oa
the subject of a companion study (Ref. 3). Here, the nor- straight line. Hence , e the plus sign in Eq. (20

mal acceleration bound is included indirectly by imposing holds, and if 0o > OsL, the minus sign is valid.

a penalty on the performance index for high normal accel- Eq. (20) can also be obtained by integrating Eq. (11).
eration. By adjusting the weight IV, the highest normal This is accomplished by changing the independent variable
acceleration encountered along the rajectory can be con- from r to 0 using Eq. (5), using Eq. (12) to relate a, to A0,
trolledr integrating, and applying the final condition (17). Finally,

Ot is eliminated by using the final condition (14).
In order to integrate the differential equations (3) through

Solution of the Optimal Control Problem (5), it is useful to rewrite Eq. (20) in the elliptic function

form (Ref. 4)
From the variational Hamiltonian

H = I -IV 02+ A&Co - Cos, ± a 2 (A4 + P)(1 - K2 sin 2 b) (24i)
2 a V1cos -cos, I-

(8) where

+A,(v sin 0 - sin0) + A (a,), tan-y P = -G K P (25)

it is seen that the Euler-Lagrange equations are given by - 2 K

If r is chosen to be the dependent variable, Eq. (5) can
= 1= 0 (9) be integrated as

A, =-H,=0 (10) *t dO 1', dVY

= -He=-A( sin+A, cos0 (11) r.o=r-rO o (-' 2i ( (26)

0 = H..=(l-IV) an+Ae (12)
Then, substitution of Eq. (24) leads to

Eqs. (9) and (10) state that A( and A, must be constants.

Before solving the remaining equations, the natural bound- I V
ary conditions are derived. ro = ±KV [F(OfI K) - F(0., K)] (27)

2 t



where F( , K) is the elliptic integral of the first kind. weight has been chosen to be W = 0.4. This value gives
Similarly, Eqs. (3) and (4) can be expressed as reasonable trajectories for all parameter values.

The figures presented here have been generated mainly
[2 c -2 *+,y) d (28) to verify the computational procedure. Figs. 2 through 4

J2 0(28) contain 0'. and of. Next, the normal acceleration histories
-±='2 I [vn-sin(2i-+Yld# (29) arc shown in Figs. 5 through 7 for the case where v = 0.5

ilk. 9) or VM = 2VT. Then, Figs. 8 through 10 present the flight

time, and finally, the trajectories are presented in Figs. 11
Carrying out the integration and applying the initial condi- through 13. The results presented in all the figures seem
tions (6) leads to reasonable in that they follow expected trends.

e=*K {v' (lv e.-(5- ) llFr(*,)-( °)l Time-To-Go Prediction for an Accelerating Missile
-2 .E(@,.K)- E(*, o.X)J (30)

It is d'ired to use the previous results in a six-degree-

of-freedom homing missile simulation in which the missile
and velocity is not constant and the target acceleration is not

zero. First, the missile velocity vector in the simulation
"- is projected onto the plane of the line-of-sight vector and

-AilE(*,K)-E(,P.K)J (31) the target velocity vector, and the time-to-go is calculated

+l in this plane. Second, a nominal tangential acceleration
history is assumed for the missile and a constant average

where E(O, K) is the elliptic integral of the second kind. missile velocity is determined for a given initial time and an
The last step is to satisfy the final conditions (7). This assumed final time. This velocity is then used to compute

amounts to finding the values of A( and A, which satisfy the time for intercept as defined in Sertion 3. Since the
Eqs. (30) and (31) evaluated at Of where f = 71 = 0. Be- computed final time and the assumed final time are not
cause these equations are nonlinear, the solution process is equal, an iterative process is used to compute the final time
iterative. Rather than solving for the Lagrange multipliers, and, hence, the current time-to-go.
it is more convenient to work in terms of t0o and of,. The Some results are presented in Table I for a target which
relationships between the 4,'s and the A's are obtained from performs two maximum acceleration maneuvers: one when
Eqs. (24) and are given by the missile is 6,000 feet away and one when the missile is

1.0 sec away. Miss distances are shown for two off-boresightAt -Wcos(6, - 240) (32) angles, two launch ranges, and seven aspect angles. In Case
2 sin 2 41 - I + vcos(O -80 + 21'o) I, time-to-go is calculated as range over closing speed, and in

A, - W sin( 0o - 20,) (33) Case 11, it is calculated using the minimum-time solution. In
2sin 2f - I + ucos(O - 00 + 24'o) general, the new time-to-go algorithm yields a smaller miss

distance than range over closing speed. In several cases it
gives a hit where the latter gives a miss (more than ten

Numerical Results feet).
Discussion and Conclusions

Given values for W, v, <0, and 0, the values of 6° and
of which satisfy Eqs. (30) and (31) evaluated at the final A time-to-go algorithm has been developed which is

point are computed using Newton's method with analytical valid for missile-target geometries which differ greatly from
derivatives. Given 4 and Ofj, A( and A, follow from Eqs. the intercept triangle. The algorithm is based on the analyt-

(32) and (33). Next, Eqs. (21) through (23) give A, B, and ical solution of a weighted minimum-time problem. While

C, and Eqs. (25) give -y, P, and K. Finally, the values of the algorithm has been developed for a constant velocity

and 77f can be computed from Eqs. (30) and (31). Improved missile in two dimensions, it can be applied to an acceler-

values for v. and Ofp (values which make and 1, closer to ating missile in three directions by using an average missile
zero) are provided by Newton's method, velocity and by computing the time-to-go in the plane of

Numerical results have been generated for the following the line-of-sight vector and the target velocity v!!ctor. A
parameter values: six-degree-of-freedom simulation shows that the proposed

time-to-go algorithm improves miss-distance performance

v = 0, 0.2, 0.4, 0.6, 0.8 relative to computing time-to-go as range divided by cos-

0 = 0, 450, 90* ing speed.

-70* < 0, < 700 Acknowledgement

The limits on 0. are dictated by the field of view of the This research has been supported by the Air Force Ar-
seeker. Results are available for up to 180°in Ref. 4,

mament Laboratory under Contract No. F08635-87-K-0417.
but they have not been presented here because of space
limitations. After some experimentation, the value of the
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Table 1: Simulation Results

0.00
Off- Case I Case II

Doresight Launch Aspect- Miss Miss - -
Angle Range Angle Distance Distance 50. 50
(deg) (ft) (deg) (ft) 00ft)

0 7000 0 0.156 0.337 -
0 7000 30 0.694 0.243
0 7000 60 1.203 0.2840 7000 90 1.322 0.469 - .o

0 7000 620 1201 0.24 -60 -40 -20 0 20 40 60
0 7000 120 2.561 0.265 THETA - DEG.

0 7000 150 0.739 0.077

0 7000 180 0.351 0.010 Fig. 2a, 0. for 0 = 0 deg
0 3000 0 0.983 0.097
0 3000 30 0.703 0.069 PHI= 0 DEG.

0 3000 60 1.382 0.063 1.50 '9 ' i I

0 3000 90 2.512 0.138
0 3000 120 11.85 2.950 1 o.o

0 3000 150 4.166 2.911
0 3000 180 0.605 0.253
40 7000 0 301.7 1251. 0. 0o-

40 7000 30 230.9 1450.
40 7000 60 0.156 0.970

40 7000 90 0.910 0.296

40 7000 120 1.947 0.092
40 7000 150 1.546 0.323
40 7000 180 0.376 0.063 I

40 3000 0 2116. 0.041

40 3000 30 2700. 0.238 10-

40 3000 60 2811. 0.165 .4
40 3000 90 2520. 0.267 -i. so

40 3000 120 1878. 0.386 -60 -40 -20 0 20 40 60

10 3000 150 693.6 12.55 THETA - oC,

40 3000 180 229.6 267.2 Fig. 2b, 4,f for 0 = 0 deg

4i.2,¢1fr =0e
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